
Solution Set 9, 18.06 Fall '12

1. Do Problem 7 from 6.4.

Solution. (a) The determinant is 1 − b2. If b = 2 this is negative which implies that

the two eigenvalues are of opposite signs (determinant=product of eigenvalues), in

particular one of them must be negative.

(b) The number of negative pivots is the same as the number of negative eigenvalues.

(c) This matrix has trace 2 whatever b is so it cannot have two negative eigenvalues

(trace=sum of eigenvalues).

2. Do Problem 26 from 6.4.

Solution. We see that

[
1
1

]
is an eigenvector for the eigenvalue 1 + 10−15. The angle

between the two eigenvectors is 45 degrees.

3. Do Problem 4 from 6.5.

Solution. For the �rst one, we �nd :

f = x2 + 9y2 + 4xy

This can be written as a sum of two squares :

f = (x+ 2y)2 − 4y2 + 9y2 = (x+ 2y)2 + 5y2

For the second one, we �nd :

f = x2 + 9y2 + 6xy

This can be written as one square :

f = (x+ 3y)2

4. Do Problem 16 from 6.5.

Solution. Recall that a positive de�nite matrix is de�ned to be a matrix A such that

xTAx > 0 for any non zero vector x.

We see that for the matrix A given in this problem, when x1 = x3 = 0 and x2 = 1,
xTAx = 0, therefore A fails to be a de�nite positive matrix.

5. Do Problem 30 from 6.5.
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Solution. The expression z = ax2 + 2bxy + cy2 can be identi�ed with xTAx where

x =

[
x
y

]
and A =

[
a b
b c

]
. A saddle point will happen when this expression can take

both positive and negative values. This happens if A is neither positive de�nite nor

negative de�nite. Equivalently this happens when A has one negative eigenvalue and

one positive eigenvalue. Since the determinant is the product of the eigenvalue, a

simple way to test this fact is to check that the determinant is negative.

In conclusion, the function z has a saddle point at (0, 0) if ac− b2 < 0.

6. Do Problem 2 from 6.6

Solution. Let M =

[
0 1
1 0

]
. M is a permutation matrix, whose inverse is M itself.

Multiplying a 2-by-2 matrix on the left by M swaps the two rows and multiplying on

the right swaps the two columns. In particular, we see that :

M

[
1 0
0 3

]
M−1 =

[
3 0
0 1

]
which shows that the two matrices are similar.

7. Do Problem 12 from 6.6.

Solution. LetM be any 4x4 matrix. Let's call its rows R1, R2, R3, R4 and its columns

C1, C2, C3, C4. With this notation, JM =


R2

0
R4

0

 andMK =
[
0 C1 C2 0

]
. Saying

that these two matrices are equal tells us that some entries of M have to be 0. More

precisely, the �rst and second column have a zero in second and fourth position and

the second and fourth row have a zero in the �rst and fourth position. M has to be

of the following form :

M =


? ? ? ?
0 0 ? 0
? ? ? ?
0 0 ? 0


We see that the second and fourth row of M are dependant which prevents M from

being invertible.

Remark : Another way to see that J and K are not similar is to compute their square

J2 = 0 and K2 6= 0.

8. Do Problem 8 from 6.7.
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Solution. The matrix Σ is diagonal with positive entries on the diagonal. The matrix

Σ−1 is obtained by taking the inverse of each diagonal entry. Taking inverse reverses

inequality, therefore σmax(A−1) which is the biggest number among the inverses of

the singular values of A must be the inverse of the smallest singular value of A :

σmax(A−1) = σmin(A)−1

Thus the product σmax(A−1)σmax(A) is equal to the quotient σmax(A)
σmin(A)

. Since σmax(A) ≥
σmin(A) > 0, we must have :

σmax(A)

σmin(A)
≥ 1

9. Do Problem 13 from 6.7.

Solution. Let R = USV T be the SVD of R, and A = U ′S′V ′T be the SVD of A = QR.
We know that the diagonal entries of S are the square roots of the eigenvalues of RTR
and the columns of V are an orthonormal basis of eigenvectors of RTR. We have :

ATA = RTQTQR = RTR

This implies that S′ = S and V = V ′.

We see that if we take U ′ = QU U ′ is orthogonal and we have :

A = QUSV T

which shows that U ′ = QU .

In conclusion, only U is changed because of Q.

10. The solution is on the MATLAB solutions �le.

3


